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A process tomography based optimization scheme for open quantum systems is used to determine the
performance limits of Josephson charge qubits within current experimental means. The qubit is modeled
microscopically as an open quantum system taking into account state leakage, as well as environment-induced
dephasing based on experimental noise spectra. Within time-optimal control theory, we show that the compet-
ing requirements for suppression of state leakage and dephasing can be met by an external control of the
effective qubit-environment interaction, yielding minimal gate fidelity losses of around �F�10−3 under typi-
cal experimental conditions.
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I. INTRODUCTION

Within the circuit model of quantum computing, the fun-
damental building block of a quantum computer is the quan-
tum bit or qubit. Our ability to precisely execute unitary op-
erations within qubits is an essential prerequisite for the
implementation of quantum algorithms and for harnessing
the full computational power of a more complex quantum
system. Among the various proposals for a physical realiza-
tion of a qubit, specially designed superconducting circuits
have been identified as promising candidates.1,2 Their poten-
tial is mostly founded on the high technological standards by
which superconducting quantum interference devices
�SQUIDs� can be fabricated and controlled, as well as their
promise regarding array scalability.3 Several types of
Josephson-junction-based qubit designs, such as charge,
phase, and flux qubits, have been proposed and explored in
the laboratory.4–7 Conditional gate operations have already
been performed experimentally.8,9

While preliminary results indeed look promising, consid-
erable improvement in gate performance will be necessary to
make these structures useful in larger arrays of quantum
gates. Similar to all solid-state-based qubits, Josephson qu-
bits suffer from two main shortcomings: they are quantum
two-level systems only within approximation and there is
non-negligible coupling to the environment. The former may
result in leakage to noncomputational basis states which af-
fects the fidelity of quantum gates.10–14 The latter results in
an unwanted population relaxation and destruction of state
superpositions, both being detrimental for quantum
computation.15,16

In this work we study Josephson charge qubits and show
how the conflicting requirements for suppression of both
state leakage and decoherence can be accomplished within
optimal control theory. In the first part, we outline the model
for the Josephson charge qubit, including leakage and envi-
ronmental interaction on which we base our study. Then, we
formulate a cost functional for state-independent optimiza-
tion of open quantum systems based on the Kraus represen-
tation and process tomography. This method can be readily
applied to any open quantum system, including other qubit
implementations as well as multiqubit gates, and is not nec-
essarily restricted to solid-state realizations. In the remainder

of the paper, we demonstrate the approach for the Hadamard
gate implementation.

II. JOSEPHSON CHARGE QUBIT

The basic structure of a Josephson charge qubit is shown
in Fig. 1.2,4,17 The characteristic energy scales are the charg-
ing energy EC of the superconducting island, the Josephson
coupling energy EJ

0, and the superconducting energy gap �.
If � is the largest energy, the problem can be reduced to a
situation where no quasiparticle excitation is found on the
island and only Cooper pairs can tunnel through the Joseph-
son junctions. Cooper-pair relaxation on the island, as well
as quasiparticles tunneling from the reservoir onto the island,
contributes, in principle, to relaxation and decoherence. The
latter takes place at time scales of the order �T2

qp�−1

�
gT�r

2��Nqp, where gT denotes the conductance of the Joseph-
son junctions �in units of e2 /h�, �r is the quasiparticle level
spacing in the reservoir, and Nqp is the number of
quasiparticles.18,19 For typical charge-qubit architectures, T2

qp

is of the order of 10−3–10−5 s and, thus, on a time scale
much larger than we are investigating in the present work.
Cooper-pair relaxation within the island is even weaker and
may be neglected too. Within the charge basis ��n��, the
Hamiltonian of the system,
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FIG. 1. �Color online� Superconducting charge qubit with two
Josephson junctions. The two junctions are realized by small insu-
lating layers which divide a superconducting ring into a small island
�red/gray� and a reservoir �thick black� �Ref. 2�. The qubit is driven
by an external flux � and a gate voltage V. The voltage is coupled
capacitively �C� to the island. The Josephson junctions are charac-
terized by a capacitance CJ and the Josephson coupling energy EJ

0.
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HS = 4EC	n − nc�V�
2 − 2EJ
0 cos��

�

�0
�cos � , �1�

may be written as

HS = 

n

�4EC	n − nc�V�
2�n��n�

+ EJ�����n + 1��n� + �n��n + 1��� , �2�

with � �the phase difference across a Josephson junction�
being the conjugate variable to the number n of additional
Cooper pairs on the island,2

EJ��� = − EJ
0 cos���/�0� �3�

and nc�V�=VC / �2e� contain two independent physical con-
trol fields, V=Vg+Vp and �, where Vg and Vp denote a dc
and a pulse gate voltage, respectively. � is the external mag-
netic flux. The latter can be used to tune EJ��� between −EJ

0

and 0.20 By proper choice of the dc gate voltage Vg, one can
set the qubit “working point” to the charge degeneracy point,
where the qubit is insensitive to charge fluctuations up to the
first order. Using, next to the computational basis ��0� , �1��,
two adjacent leakage states �−1� and �2�, the effective “leaky
qubit” Hamiltonian at the charge degeneracy point reads

HS = �
8EC EJ��� 0 0

EJ��� 0 EJ��� 0

0 EJ��� 0 EJ���
0 0 EJ��� 8EC

� + 4ECnp�t�X ,

X = �
3 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 − 3
�, np = np�Vp� . �4�

For our computation we consider a typical charge qubit with
energies EC=150 �eV and EJ

0=35 �eV from the
experiment.4,15,21 The qubit can be controlled by tuning the
external magnetic flux 	�=��t�
 and the applied pulse gate
voltage 	Vp=Vp�t�
.

In the derivation of the Hamiltonian 	Eq. �1�
, the loop
inductance of the superconducting ring has been neglected.
For the parameters used in the present work, this approxima-
tion is justified if L��0

2 / �4�2EJ
0��20 nH. We also assume

that the Josephson coupling energies of the two junctions are
identical. However, if EJ

0→EJ
0+�EJ

0 for one of the junctions,
Eq. �3� turns into EJ���=−EJ

0��1+	�cos�� �

�0
�+ i	 sin�� �

�0
��,

with 	�
�EJ

0

2EJ
0 , see, e.g., Ref. 20. In order to avoid such an

asymmetry, it is possible to substitute one of the Josephson
junctions in Fig. 1 by a SQUID, which enables one to tune
the Josephson energies to be equal.17

In superconducting qubits the dominant dephasing mecha-
nism �at low temperature� is attributed to noise which
changes from 1 / f to Ohmic behavior at frequencies of typi-
cally kBT /�.15 The microscopic origin of the 1 / f noise is not
fully understood yet but it is believed that it originates from
background charge fluctuations. Ohmic contributions may
result from intrinsic sources or from gate lines.15,16,21 We

map these fluctuations onto a bath of harmonic oscillators
coupling linearly to the qubit.22,23 The system is thus mod-
eled by a Hamiltonian of the form

H�t� = HS�t� + HB + HI, HB = 

k

�
kbk
†bk,

HI = �X � 

k

gk�bk
† + bk� � X � � , �5�

where gk is the effective coupling constant of the spin-boson
interaction and bk

† and bk are the bosonic creation and anni-
hilation operators for the mode with frequency 
k. The dy-
namics of the system, bosonic bath, and the interaction be-
tween the two, respectively, is governed by the Hamiltonians
HS, HB, and HI, whereby the external control field ��t� to be
optimized is contained in HS only, thus assuming that there is
no direct control over HB and HI.

Apart from correlation functions, noise has to be classi-
fied by its amplitude distribution �AD�. For the spin-boson
model with a thermal bath the AD is normal distributed
�Gaussian noise�, which agrees quite well with the experi-
ment, especially at short time scales with which we are
concerned.24 Guided by the experimental results of Ref. 15,
we construct the spectral density by choosing J�
�=J1/f�
�
+Jf�
�, consisting of a 1 / f and an Ohmic contribution,23

J1/f = 
1/f/�4kBT�, Jf�
� = 
 f/�2��
 . �6�

For thermal equilibrium, the noise spectrum S��
� associated
with the operator � in Eq. �5� in terms of J�
� is then �a tilde
denoting the interaction picture�

S��
� = ���̃�t�,�̃�t����
 = �
−�

�

d���̃�t�,�̃�t���ei�


= 2�J�
�coth� �


2kBT
�, � � t − t�. �7�

For �
�2kBT and �
�2kBT, Eqs. �6� and �7� give the 1 / f
noise spectrum, S1/f�
��
1/f /
, and the Ohmic spectrum,
S
�
��
 f
, respectively. The strength of the charge fluc-
tuations �proportional to 
1/f� has been determined in the
experiment to saturate at ��10−3e�2 for temperatures lower
than 200 mK.24 The slope of the Ohmic contribution is given
in Ref. 15. A plot of the specific noise spectrum which we
use numerically can be seen in the inset of Fig. 3�a�.

Inspection of Eqs. �4� reveals that simple control strate-
gies for leakage suppression and minimization of decoher-
ence are in conflict with one another. The most convenient
way to minimize dephasing within the computational sub-
space would be a large absolute value of the Josephson cou-
pling energy EJ��� because it sets the minimum time �top�
needed to perform unitary transformations which incorporate
rotations around the x axis of the Bloch sphere �as needed for
the Hadamard gate�. The faster top, the lesser the effect of
decoherence on the gate. However, in the present supercon-
ducting qubit architecture, EJ��� is also responsible for cou-
pling to the noncomputational basis states �−1� and �2�. Due
to the structure of X in Eq. �5�, the net decoherence rate is
enhanced when they participate in the dynamics. Thus, if
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decoherence effects are present, the transfer of coherence to
the leakage subspace is highly undesirable. In the unitary
case, coherence can be transferred back to the computational
subspace without loss �given sufficient control�. These con-
flicting requirements, as well as the complexity of an open
quantum system, make the design of pulses which maximize
the fidelity of the quantum gate a nontrivial task.

III. STATE-INDEPENDENT OPTIMAL CONTROL

In the context of quantum information processing, coher-
ent control of unitary operations within the qubit is of fun-
damental interest.25 In contrast to the optimization of state-
selective transitions, e.g., to maximize the probability of a
certain pathway in a chemical reaction,26 here we are inter-
ested in the optimization of the whole dynamical map.
Hence, the qubit should perform a desired unitary operation,
irrespective of its initial state. We call this task “state-
independent” optimal control.

We consider a Hilbert space which is a tensor product of
the Hilbert space of the open quantum system �from now on
denoted as system� HS and the Hilbert space of the environ-
ment �which we will call bath� HB, H=HS � HB= �HS1
� HS2� � HB. Within the system we distinguish between
computational states on which the gate operation is specified,
spanning HS1, and “leakage levels” spanning HS2.27

The task of state-independent optimization can be stated
as follows. The density matrix of the system, �S�t�, evolves
in time according to the map, �S�0���S�t�=Et��S�0��, for
which the superoperator Et is functionally dependent on ex-
ternally applied control fields ��t�, i.e., Et=Et	�
. In order to
maintain the positivity of �S�t�, the map E has to be com-
pletely positive and, thus, can be represented by Kraus op-
erators Km,28,29

�S�t� = Et	�
��S�0�� = 

m

Km	�
�t��S�0�Km
† 	�
�t� , �8�

with Km	�
�t� depending on the propagator of the composite
system and, hence, on ��t�. We now want to find a control
field ���t� for which, at some final time tf, Etf

	��
 approaches
the desired mapping ED as closely as possible. For quantum
gate operations, for example, one would set

ED� . � = UD�tf�� . �UD
† �tf� , �9�

where UD�tf� is the unitary operation to be executed within
the gate. In the context of quantum information theory it is
useful to formulate a cost functional within the language of
process tomography �see, e.g., Refs. 28 and 30–32� to define
a measure of how well such a, not necessarily unitary, de-
sired operation has been accomplished. We rewrite the map-

ping E by expanding the Kraus operators, Km�t�=
n
mnK̄n,

with 
mn�C and K̄n�A, where A denotes a complete basis
set of M �M matrices.30 M =MC+ML is the total number of
orthonormal basis states, consisting of MC computational and
ML leakage levels. The final state of the quantum system,
starting out in ��0�, now reads

��tf� = Etf
���0�� = 


m,n
K̄m��0�K̄n

†�mn�tf� , �10�

with �mn=
k
km
kn
� . For the example of the Josephson

charge qubit described above, one has MC=2, and ML=2
with basis states ��0� , �1�� and ��−1� , �2��, respectively.
Hence, we are dealing with a M2�M2=16�16 representa-
tion of � 	see Figs. 2�a� and 2�d�
. The matrix � in Eq. �10�
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FIG. 2. �Color online� 	�a� and �d�
 Deviation of the Hadamard
process tomography matrix elements ��̂�mn for optimized control
fields 	as given in Figs. 2�b�, 2�c�, 2�e�, and 2�f�
 from the desired
values ��̂D�mn. Black areas denote matrix elements which are irrel-
evant and, hence, arbitrary. They neither alter the qubit dynamics
nor induce transitions out of the qubit subspace, i.e., leakage. For
simplicity, they are plotted as zero 	see also Eq. �17�
. Red �dark
gray� columns show deviations of matrix elements which represent
the gate operation within the qubit subspace, whereas white bars
display leakage. 	�b�,�e� and �c�,�f�
 The strength of the optimal
control fields lies within realistic values and the optimal solutions
have a simple shape.

TIME-OPTIMAL PERFORMANCE OF JOSEPHSON CHARGE… PHYSICAL REVIEW B 79, 224516 �2009�

224516-3



is usually termed process tomography matrix and in order to
compute its elements, we choose a fixed set of operators
�� j�=B �for simplicity we choose B=A� for which we de-
termine the time evolution with respect to the mapping E,
i.e.,

� j�tf� � Etf
�� j� . �11�

For one-qubit operations with two leakage levels or two-
qubit gates, the tensor product of Pauli matrices �i � � j with
i , j� �x ,y ,z ,0� and �0=1 is a convenient choice for A and B,
which we use in present work. In the experiment, Eq. �11�
corresponds to the preparation in and subsequent time evo-
lution of suitable different initial states ��� j� of the quantum
system. Recently, process tomography methods have been
applied to superconducting qubits.33,34 Because Eq. �8� is a
linear mapping, one can rewrite Eq. �11� by

Etf
�� j� = 


k

cjk�k. �12�

The mapping Etf
is described completely in terms of coeffi-

cients cjk, whose experimental determination involves quan-
tum state tomography.28 The last step in order to calculate the
process tomography matrix relates cjk to �mn. Therefore, we
note that combining Eqs. �10�–�12�,



k

cjk�k = 

m,n

�m� j�n�mn�tf� . �13�

To extract the coefficients cjk we apply the scalar product
��i ,�k�=�ik and get from Eqs. �11�–�13�,

cji = ��i,� j�tf�� = 

m,n

��i,�m� j�n��mn�tf� � 

m,n

Bimjn�mn�tf� .

�14�

�mn�tf� can now be calculated by solving the system of linear
equations ��i ,� j�tf��=
m,nBimjn�mn�tf�, which includes in-
version of B.

Defining the operator29

�̂ = 

m,n

�K̄n
�

� K̄m��mn, �15�

we formulate a simple cost functional,

J � �P�̂ − �̂D�2 = tr�	P�̂ − �̂D
	P�̂ − �̂D
†� , �16�

where P denotes the projector onto the MC-dimensional
computational Hilbert space and 0�J�Jmax=2MC

2 . For the
charge-qubit example,

Pij = 

k=6,7,10,11

�i,k� j,k with i, j � �1,2, . . . ,M2 = 16� .

The transformation given in Eq. �15� corresponds to stacking
the columns of the density matrix �S from left to right on top
of one another, i.e., �S→col��S�, which yields a
M2-dimensional single-column vector, termed col��S�. For
the present work, this transformation is of the following
form:

�S = �
�11 �12 �13 �14

�21 �22 �23 �24

�31 �32 �33 �34

�41 �42 �43 �44

�→ col��S� =

⎣
⎢
⎢
⎢
⎡

�11

�21

�31

�41

�12

�22

�32

�42

�13

�23

�33

�43

�14

�24

�34

�44 ⎦
⎥
⎥
⎥
⎤

,

�17�

where the framed density-matrix elements belong to the
computational subspace. The process tomography matrix �
changes accordingly, �→ �̂, as given in Eq. �15�. For further
details see Ref. 29. J measures the norm distance between
the target operation �̂D and the actual operation �̂ executed at
time tf for the control field �. For the Hadamard gate with
two leakage levels we set

�̂D = UD
�

� UD with UD =
1
�2�

0 0 0 0

0 1 1 0

0 1 − 1 0

0 0 0 0
� .

A similar approach based on a superoperator formalism is
given in Ref. 35.

IV. QUBIT DYNAMICS

Starting with the von Neumann equation for the full sys-
tem dynamics, d

dt��t�=− i
� 	H�t� ,��t�
, the time evolution of

the operators �̃ j�t� �with tilde denoting the interaction pic-
ture� is computed within a non-Markovian master equation
in Born approximation,36

d

dt
�̃ j�t� = −

1

�2�
0

t

dt� trB�	H̃I�t�,	H̃I�t��,�̃ j�t�� � �̃B�0�

� ,

�18�

using a numerical method described in Ref. 37 to deal with
the kernel, which is nonlocal with respect to time. trB denotes
the partial trace over all bosonic degrees of freedom. For
�̃B�0� we assume a bath in thermal equilibrium at T
=50 mK. We also introduce a sharp infrared and a continu-
ous ultraviolet cutoff for the spectral density, i.e.,
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J�
� → 	J1/f�
���
 − �ir� + Jf�
�
e−
/�uv. �19�

We choose �ir=2��100 Hz and �uv=2��100 GHz
�Ohmic noise in Josephson charge qubits has been measured
up to frequencies of 100 GHz�.15 The lower bound for the
infrared cutoff is determined by the data-acquisition time of
the experiment. We have tested our optimal pulses with re-
spect to different infrared and ultraviolet cutoff frequencies,
see Figs. 3�a� and 3�b�. When evaluating the trace of the
double commutator in Eq. �18�, one has to calculate bath
correlation functions of the form

��̃�t��̃�t��� = trB��̃�t��̃�t���̃B�0�� ,

which can be derived analytically using the spectral density
given in Eqs. �6� and �19�.

V. RESULTS

Our strategy is to use short control pulses of high ampli-
tude which move the qubit away from the degeneracy point
only briefly and are within current experimental capabilities.
We employ a time-optimal control strategy which incorpo-

rates the final time of the gate operation �tf� as an additional
control parameter, compatible with experimental control field
strength. The control fields are of the form

nc�t� =
1

2
+ g�t�Ac sin�
ct + �c�e−�c�t − tc

0�2
,

��t�
�0

= g�t��1 −
A�

2
	�1 + sin�
�t + ����e−���t − t�

0 �2

� ,

with �Ac/� ,
c/� ,�c/� ,�c/� , tc/�
0 � representing free param-

eters. Additionally, we restrict �nc�t� ,��t�� to start and end at
the degeneracy point �nc=1 /2,�=0� by using an envelope
function g�t� 	dashed gray line in Fig. 2�b�
 and to satisfy
other constraints imposed by the design of the superconduct-
ing circuit. There are other methods, such as driving the qu-
bit by NMR-like techniques and adiabatic pulses, within
which fidelities of �0.3–0.4 have been achieved.38 Gate fi-
delities of �0.4 have also been reported for a CNOT gate
implemented by two coupled flux qubits.9 Recently, single
qubit operations with gate errors of 1�2% have been real-
ized within phase and transmon qubits.34,39

To optimize the cost functional Eq. �16� we use a paral-
lelized constrained version of a differential evolution algo-
rithm with 300 individuals per generation and 3000 genera-
tions per optimization run.40 The algorithm finds an optimum
for control fields given in Figs. 2�b� and 2�c�. We typically
choose crossing probabilities �C� and scaling parameters �S�
within a range of C� 	0.90,0.96
 and S� 	0.75,0.85
. Varia-
tions in these parameters have a large impact on the conver-
gence rate of the algorithm. All calculations have been per-
formed on a 40 node SUN Linux Cluster.

For tf �50 ps, gate fidelity �F� losses �F=1−F
��J	��
 /Jmax�1/2 as low as �10−3 are achievable. A plot of
the associated matrix-element deviations from the Hadamard
operation, ���̂− �̂D�mn�, is shown in Fig. 2�a�. Losses from
decoherence �mainly included in red/dark gray bars� domi-
nate over those from leakage �mainly included in white bars�
by about a factor of 15, largely due to Ohmic contributions in
the noise spectrum. To demonstrate the importance of includ-
ing additional Cooper-pair occupation on the superconduct-
ing island within the model, we optimized the gate without
leakage and then used these control fields to steer the qubit
subjected to the leakage. The value of the cost functional
increases by about 4 orders of magnitude corresponding to
an increase in �F by 2 orders of magnitude. Incorporation of
leakage states �−2� and �3� does not add significant fidelity
losses for optimal pulses given in Figs. 2�a� and 2�b�. There-
fore, expanding the leakage state space beyond �−1� and �2�
is not necessary.

We have also explored longer pulses �tf =200 ps� and do
not start at the degeneracy point with respect to � 	the work-
ing point is now set at �nc=1 /2,�=�0 /2�, see Figs.
2�d�–2�f�
. These pulses show an enhanced reduction in leak-
age but they do lead to stronger decoherence because of an
increased pulse duration. Also, moving the qubit working
point away from the degeneracy point causes higher sensi-
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FIG. 3. �Color online� �a� Variation in the cost functional with
respect to changes in the infrared and ultraviolet cutoff frequency.
We used the pulse sequences shown in Figs. 2�b� and 2�c�. Inset,
solid line: noise spectrum employed for our calculations. Dashed
and dotted-dashed lines represent 1 / f and f noise contributions,
respectively. �b� For a given ultraviolet cutoff, the cost functional
shows a logarithmic dependence on �ir, i.e., J��ir�� log�1 /�ir�, as
expected �see Ref. 23�. �c� For J��uv� we obtain a logarithmic de-
pendence over a broad regime. However, when Ohmic contributions
become relevant the cost functional increases significantly.
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tivity to fluctuations in the control fields. Typical fidelity
losses �F for 200 ps pulses are about six times higher than
those for the 50 ps ones ��F�10−2�.

Time-optimal control inevitably leads to short pulses
�typically of the order of 50 ps for the present field intensi-
ties� whose generation in experiment is a demanding task.
However, picosecond electrical pulses can be produced, e.g.,
by optoelectronic devices, such as photoconductive
switches,41 or by optical rectification of ultrashort optical
pulses using nonlinear media �e.g., LiTaO3�.42 Ultrafast
pulse-shaping methods have been discussed extensively in
Ref. 12.

VI. CONCLUSION

By applying a newly developed process tomography
based optimal control theory for open quantum systems to a
Josephson charge qubit, we have shown that one-qubit gates,
such as the Hadamard gate, can be realized with remarkably
high fidelity. The strategy has been to keep deviations of the
control fields with respect to the degeneracy point as short as

possible while performing the desired unitary operation in
time-optimized fashion compatible with experimentally
available control field strength. A fully quantum-mechanical
description based on experimental noise spectra has been
employed to model dephasing effects and additional non-
computational basis states have been included to account for
unwanted Cooper-pair occupation on the superconducting is-
land. Depending on the gate operation time, which has been
treated as a variable, we could achieve fidelities of the order
of F�1–10−3 to 1–10−2. In terms of the process tomogra-
phy matrix this corresponds to errors of the order Abs	��̂
− �̂D�mn
�10−3–10−2. Thus we find that charge qubits can be
made to perform at an equal level with current realizations of
other Josephson qubits �such as phase, flux, or transmon qu-
bits� which have been tested in experiment so far.
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